On Reich fixed point theorem of G-contraction mappings on modular function spaces
نویسندگان
چکیده
We define the multivalued Reich (G, ρ)-contraction mappings on a modular function space. Then we obtain sufficient conditions for the existence of fixed points for such mappings. As an application, we introduce a ρ-valued Bernstein operator on the set of functions f : [0, 1] → Lρ and then give the modular analogue to Kelisky-Rivlin theorem. c ©2016 All rights reserved.
منابع مشابه
Fixed point theorem for non-self mappings and its applications in the modular space
In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...
متن کاملExtensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces
The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.
متن کامل$C$-class functions on common fixed point theorems for weak contraction mapping of integral type in modular spaces
In this paper, we use the concept of $C$-class functions introduced by Ansari [4] to prove the existence and uniqueness of common fixed point for self-mappings in modular spaces of integral inequality. Our results extended and generalized previous known results in this direction.
متن کاملFixed Point Results for Cyclic (α,β)-Admissible Type F-Contractions in Modular Spaces
In this paper, we prove the existence and uniqueness of fixed points for cyclic (α,β)-admissible type F-contraction and F−weak contraction under the setting of modular spaces, where the modular is convex and satisfying the ∆2-condition. Later, we prove some periodic point results for self-mappings on a modular space. We also give some examples to s...
متن کاملNew best proximity point results in G-metric space
Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...
متن کامل